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Visual Genealogy of Deep Neural Networks
Qianwen Wang, Jun Yuan, Shuxin Chen, Hang Su, Huamin Qu, and Shixia Liu

Abstract—A comprehensive and comprehensible summary of existing deep neural networks (DNNs) helps practitioners understand
the behaviour and evolution of DNNs, offers insights for architecture optimization, and sheds light on the working mechanisms of DNNs.
However, this summary is hard to obtain because of the complexity and diversity of DNN architectures. To address this issue, we develop
DNN Genealogy, an interactive visualization tool, to offer a visual summary of representative DNNs and their evolutionary relationships.
DNN Genealogy enables users to learn DNNs from multiple aspects, including architecture, performance, and evolutionary relationships.
Central to this tool is a systematic analysis and visualization of 66 representative DNNs based on our analysis of 140 papers. A directed
acyclic graph is used to illustrate the evolutionary relationships among these DNNs and highlight the representative DNNs. A focus +
context visualization is developed to orient users during their exploration. A set of network glyphs is used in the graph to facilitate the
understanding and comparing of DNNs in the context of the evolution. Case studies demonstrate that DNN Genealogy provides helpful
guidance in understanding, applying, and optimizing DNNs. DNN Genealogy is extensible and will continue to be updated to reflect future
advances in DNNs.

Index Terms—Interactive Visual Summary, Information Visualization, Educational Tool, Deep Neural Networks.
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1 INTRODUCTION

O VER the past few years, deep neural networks (DNNs) have
exhibited state-of-the-art performances in many applications,

including classification [59], language translation [44], [65], and
speech recognition [5], [24]. As a breakthrough in artificial
intelligence, DNNs have been attracting attention not only from
researchers, but also from practitioners who are interested in
applying DNNs to their applications.

Even though DNNs have achieved impressive progress, their
working mechanisms remain unclear, especially to average practi-
tioners. Principled rules for the design of DNNs (what architecture
is the best choice for a specific task) remain lacking. Researchers
keep exploring new DNN architectures on the basis of their
empirical knowledge, expertise, and extensive experiments, thereby
leading to the wide high diversity of existing DNNs. Practitioners,
especially new beginners, can be easily baffled by the variety of
available DNNs and often fail to understand them and apply them
as needed. Therefore, an educational tool that provides informative
guidance for understanding and applying DNNs is necessary.

To inspire and motivate the wide adoption and extensive use of
DNNs, a summary and presentation of existing DNNs are needed.
However, summarizing DNNs and representing this summary are
technically demanding. Three main challenges need to be addressed.
The first challenge is caused by the rising number of DNNs.
Due to their excellent performances, an increasing number of
DNNs have been developed for different applications [6]. It is
non-trivial to examine the numerous existing DNNs and summarize
representative DNNs from them. Moreover, informative visual
guidance is needed to prevent users from being overwhelmed when
exploring these DNNs and thus make informed decisions when
choosing which DNN to use for their tasks. The second challenge
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comes from the complexity of DNN architectures. Advances
in DNNs have led to complex architecture designs, including
deep layers (over 1200 layers [28]), multiple branches [34],
and dense skip connections [27]. Such complex architectures
render the observation, comparison, and understanding of DNNs
difficult, thus posing unique challenges for representation. The third
challenge lies in the diversity of DNNs. Given the unclear working
mechanisms of DNNs, DNN researchers and practitioners keep
exploring various DNNs for different tasks, leading to a variety
of DNN architectures. The diversity of DNN architectures results
in challenges in identifying the evolutionary relationships among
DNNs (one DNN is inspired by another DNN) and in revealing the
evolution patterns of DNNs (DNN architectures are getting deeper).

To tackle the aforementioned challenges, we design and
implement DNN Genealogy, a visual educational tool, to facilitate
the exploratory analysis of different DNNs and to understand the
pros and cons of each DNN in the context of model architecture
and performance. To summarize the large number of existing
DNNs, we employ a semi-automatic survey approach to extracting
representative papers from a total of 16465 papers, constituting
all papers published in CVPR, ICLR, NIPS, IJCAI, ICML, AAAI,
and JMLR from 2012 to 2018. A hierarchical topic model [10]
is employed to aid in the analysis of such massive literature. A
four-step pipeline is developed to extract 140 relevant papers, from
which we manually identify 66 representative DNNs. Consulting
other surveys [21], [35], [67] and discussing with DNN experts
further validate our summary. To assist in understanding and
learning DNNs, we design and implement DNN Genealogy to
present our summary and analysis of these 66 DNNs, as shown
in Fig. 1. The evolutionary relationships among the DNNs are
illustrated by a directed acyclic graph (DAG), where textual
annotations provide detailed explanations of these relationships. A
focus+context visualization based on a degree of interest (DOI)
algorithm is developed to facilitate the exploration of these DNNs
by directing users to relevant content. To help users quickly learn
the main characteristic of a complex DNN architecture, we design
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Fig. 1: DNN Genealogy is an interactive visualization tool that provides a visual summary of representative DNNs. (a) the Evolution View
illustrates representative DNNs and the evolutionary relationships among them; (b) the Performance View compares the performances of
different DNNs. (c) the Architecture View conveys the detailed architecture of a DNN.

a set of network glyphs to represent the collected DNNs based on
the original papers and our understanding.

Moreover, on the basis of our development and the case studies
of DNN Genealogy, we derive the following two findings. First, we
find that most DNNs can be categorized into nine types according
to their architectures. Second, we identify a set of patterns in the
evolution of DNNs, including: 1) DNN architectures are getting
deeper and wider; 2) skip connections are widely adopted and are
getting denser; 3) new architecture types are quickly combined
with existing architecture types by follow-up work to improve the
performance further; 4) many DNNs are proposed by combining
the advantages of different existing architectures. We hope these
findings can promote the understanding of DNNs and offer insights
that help users choose, modify, and design their own DNNs.

The scope of this work is focused on supervised learning and
discriminative models, given their dominance over recent real-
world applications. A demo of DNN Genealogy is available at
https://qianwen.info/demos/DNNGenealogy/. The main contribu-
tions of this work are as follows:
• A summary and analysis of 66 representative DNNs from a

systematic survey of existing DNNs;
• A summary of the design requirements for developing DNN

educational tools based on interviews and questionnaires with
DNN practitioners;

• The design and implementation of DNN Genealogy, an
educational tool that provides informative visual guidance
in understanding and applying DNNs.

2 RELATED WORK

In this section, we briefly review two categories of work related to
ours: summarization of DNNs and visualization of DNNs.

2.1 Summarization of Deep Neural Networks
A number of manual survey efforts have been made to summarize
existing DNNs, providing guidance for learning the basic DNN
architectures under different categories, typical work in each
category, and their applications in different fields.

Most survey papers reviewed DNNs for specific applications,
such as sentiment analysis [68], image segmentation [20], and
action recognition [6]. These papers usually require a certain level
of prior knowledge about these applications and are less suitable
for novices and inexperienced DNN practitioners. Moreover, these

works focus on specific applications only, thereby failing to offer
a comprehensive overview of the field of DNNs. To provide
a comprehensible overview, Lecun et al. [35] summarized the
essential concepts in deep learning, including supervised learning,
back propagation, convolution networks, and distributed represen-
tation. Salehinejad et al. [53] described the development history
of recurrent neural networks (RNNs) and highlighted the major
advances. Although these surveys help users better understand the
development of RNNs and major concepts in deep learning, they do
not explicitly illustrate the evolution of DNNs (how ResNeXt [66]
was inspired by ResNet [23] and GoogleNet [59]). The evolution of
DNNs is useful for practitioners in understanding the connections
among DNNs and would enable them to select the appropriate
DNNs for their tasks.

Compared with the aforementioned work, DNN Genealogy
aims to help users build a comprehensive understanding of existing
DNNs, with an emphasis on their evolutionary relationships and
the patterns in their evolution. Moreover, DNN Genealogy reveals
DNNs and their evolution in a visual way, which has been
proven to be more efficient for knowledge representation [9]. The
developed visualization provides a clear overview of the DNN
evolution, guides users during exploration, and supports a detailed
examination of the DNNs of interest.

2.2 DNN Visualization
Relevant work on DNN visualizations aims to illustrate DNNs
from three aspects: architecture, performance, and hidden layer.
Architecture Visualization. The complexity of DNN architectures,
including the large number of hidden layers and the variety of
connections among them, leads to difficulties in understanding
and communicating the architecture design. Deep learning toolkits,
including Keras [14] and MXNet [11], provide tools for visualizing
neural network architectures. State-of-the-art DNNs may consist of
several hundreds of layers [28] and millions of connections [69],
which result in large graphs that are hard to examine, understand,
and compare. To demonstrate the main ideas of the proposed
DNN architectures and compare them with previous work, DNN
researchers usually draw diagram thumbnails for DNN architectures
according to their understanding. These diagram thumbnails, in-
stead of showing the complete architecture of a DNN, demonstrate
only the modified part compared with existing architectures, thus
facilitating the understanding and communication of a newly
developed DNN architecture. However, these diagram thumbnails
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created by different authors have different styles and thus not easily
compared with each other. To solve the aforementioned problems,
DNN Genealogy offers a two-level visualization of DNNs: a set
of network glyphs with a unified style that conveys the main
characteristic of a DNN architecture and a detailed structure view
that provides the demanded details.
Performance Visualization. Many visualization tools have been
developed to offer detailed information about the performance of
a DNN [3], [4], [64]. For example, TensorBoard [64] provides
modules for monitoring scalar values (e.g., loss, accuracy) and
the distribution of tensors to help users analyze and refine their
networks. Moreover, performance visualization can facilitate better
understanding of the working mechanisms of DNNs. Bilal et al. [8]
presented Block to reveal and analyze the confusion patterns
between classes. These patterns further dictate the hierarchical
learning behavior of CNNs. However, these visualizations are
developed to examine and analyze the performance of a single
DNN and therefore cannot be directly applied to investigate and
compare the performance of a large number of DNNs.
Visual Analysis of Hidden Layers. Various visual analysis
techniques and systems have been developed to investigate the
hidden layers of different types of DNNs and thus reveal the inner
workings of these networks, including MLP [49], CNNs [29], [38],
[40], [48], [49], deep generative models [39], and RNNs [47], [57].
For example, Liu et al. [40] developed CNNVis to disclose the
multiple facets of hidden layers and the interactions between them.
Liu et al. [39] extracted, sampled, and visualized a large amount of
time series data that represent training dynamics (e.g., activations,
gradients).

Unlike the aforementioned works, DNN Genealogy facilitates
the understanding of commonly used DNNs in context. It provides
an overview of 66 carefully selected DNNs, the evolutionary rela-
tionships among them, their performance across typical measures,
as well as their detailed architectures.

3 DESIGNING DNN GENEALOGY

To make DNN Genealogy an effective educational tool, we need
to answer two questions: What types of information are needed
for learning DNNs? How should they be represented to facilitate
the learning process? Therefore, we conducted interviews and
administered questionnaires to investigate current practices and
the information required for understanding and applying DNNs.
Grounded on the findings from the interviews and questionnaires,
we derived six design requirements to guide the design and
implementation of DNN Genealogy.

3.1 DNN Expert Interview

To understand current practices and identify potential opportunities
for DNN Genealogy, we interviewed seven DNN experts, who
are denoted by Ei(i = 1, ...,7). These experts are senior DNN
researchers from different research areas, including face detection,
video analysis, natural language processing, and 3D modeling. The
interviews were semi-structured and focused on two aspects: the
information needed for understanding/developing DNNs and the
common practice in obtaining such information. The interview
lasted approximately 35 minutes for each expert.

Based on the findings from these interviews, we created a
questionnaire for a larger range of survey.

0% 50% 100%
application (N)

architecture (N)
performance (N)
relationship (E)

representative (E)
pattern (E)

very important somehow important
not sure not very important
not at all important

0% 50% 100%

>3 years
1~3 years

<1 year
all

strongly intersted interested
not sure unintersted
strongly unintersted

(b)(a)

Fig. 2: Results of the questionnaires: (a) the importance rating
of two types of information; (b) the distribution of interest in the
developed tool. E stands for information related to the evolution of
DNNs. N represents information related to one DNN.

3.2 Questionnaire on Understanding and Developing
DNNs

We conducted a questionnaire to investigate the current practices of
DNN practitioners and researchers. This questionnaire, grounded
on our interviews with the aforementioned experts, was distributed
to DNN practitioners within three universities and one technology
company. In the survey, we targeted junior DNN practitioners
(first-year PhD students, interns), who are the targeted users of
DNN Genealogy. Overall, we received 40 responses. Of all the
participants, 20 % had more than three years of experience in using
DNNs, 37.5 % had one to three years, and 42.5 % had less than
one year.

According to the participants, the most common source of
learning DNN architecture was textual content, including papers,
online tutorials, and textbooks. Over 70 % of all participants
showed interest in an interactive visualization tool that could
demonstrate the evolution of DNNs and guide them in exploring
DNNs, as shown in Fig. 2(a). It was not surprising that their interest
decreased as their experiences in DNNs increased.

The majority of the participants reported that the understanding
of existing DNN architectures was essential for them in building a
DNN. Participants were asked to rate their agreement with related
statements on a five-point Likert scale from strongly disagree to
strongly agree. All participants agreed (55 % strongly agreed, 45 %
agreed) that they surveyed relevant DNNs before developing their
own DNNs. Fig. 2(b) shows the importance rating of different
information about DNNs. The information is categorized into two
classes. The first class contains information related to understanding
the evolution of DNNs, including representative DNNs, patterns of
evolution, and the relationships among the DNNs. The second class
contains information related to understanding one DNN, including
the architecture and performance of a DNN.

3.3 Design Requirements

Based on our questionnaires and interviews with DNN practitioners,
we derived six design requirements, which are categorized into two
classes: learning the evolution of DNN architectures (R1, R2, R3)
and investigating one particular DNN (R4, R5, R6).
R1: Explaining the relationships among DNNs. The devel-
opment of a new DNN is usually inspired by previous work.
Showing how a DNN is related to previous ones helps users
identify beneficial modifications and understand the advantages of
different DNN architectures. More than 70% of the questionnaire
participants reported that the relationships among DNNs were
(very) important to them.
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Fig. 3: DNN Genealogy consists of two main modules: the data module and the visualization module. The visualization module is
composed of an evolution visualization and a DNN visualization.

R2: Identifying the evolution pattern of DNN architectures.
The development and optimization of DNNs constitute a trial-
and-error process. Fortunately, the abundance of DNNs offers an
opportunity to identify the evolution pattern of DNN architectures
(e.g., DNN architectures are becoming deeper and wider), thus
offering informative guidance for applying and optimizing DNNs.
As the questionnaire results suggested, all the participants (strongly)
agreed that they were interested in learning the major evolution
pattern of DNN architectures. Experts E4, E5, and E6 stated
that they systematically analyzed existing DNNs to distill design
patterns, which helped them develop their own DNNs.
R3: Identifying representative DNNs. The increasing interest
in DNNs has produced numerous DNNs. Identifying the represen-
tative DNNs from the large number of existing DNNs is needed
for learning DNNs. According to the questionnaire, the majority
(82.5%) of the participants reported that knowing representative
DNNs was crucial for their learning of DNNs. Such a statement
was also confirmed in the interviews with the experts. E2, E3,
and E4 spontaneously mentioned the representative DNNs in their
research areas during the interview and stated that understanding
these representative DNNs was essential for their understanding of
the research field of DNNs.
R4: Understanding a DNN from different aspects. To obtain
a comprehensive understanding of a DNN, analysis of different
aspects of this DNN is required. The questionnaire results identified
three important aspects of a DNN: architecture (regarded as
important by 97.5% of the participants), performance (by 97.5%),
and application (by 92.5%).
R5: Illustrating DNN architectures. Understanding DNN ar-
chitectures can be challenging due to their increasing complexity.
Recent research has proposed DNNs that are very deep (e.g., over
1200 layers [28]) or with complex connections (e.g., combination
of 13 operations [69]). Directly drawing the complete architecture
of a complex DNN might result in a large graph that is difficult to
examine and understand. It is, therefore, preferred to present a DNN
architecture from multiple levels of details, including an abstract
representation that demonstrates the main idea of this architecture
(adding of skip connections) and a detailed representation of the
complete architecture that provides details of each layer(the number
of filters in a convolutional layer).
R6: Comparing different DNNs. According to our questionnaire,
95% of the participants (strongly) agreed that they wanted to
compare different DNNs to improve their understanding. They
compared a DNN with similar DNNs to understand its architecture
and the benefits brought about by its architecture. When choosing
a DNN for a task, they compared different DNNs to choose the

one that best met their requirements.

3.4 System Overview
Based on the collected requirements, we developed DNN Geneal-
ogy, which consists of two main modules: a data module and a
visualization module (Fig. 3).

The data module semi-automatically extracts representative
papers from the existing literature. 66 DNNs and their evolutionary
relationships were finally retrieved and then fed to the visualization
module for further analysis. The visualization module consists
of evolution visualization and DNN visualization. The evolution
visualization discloses the evolution of DNN architectures, which
is displayed as a DAG because of its intuitiveness (R1). In the
DAG, edges demonstrate the evolutionary relationships among
DNNs (R2) whereas nodes denote representative DNNs (R3).
The DNN visualization reveals the detailed information about a
DNN architecture (R4, R5) and facilitates the comparison between
different DNNs (R6).

4 COLLECTING AND ANALYZING DNNS

A systematic collection and analysis of representative DNNs are
at the core of DNN Genealogy. In this section, we describe our
method of collecting and analyzing DNNs.

4.1 Collecting Papers
Inspired by the survey approaches proposed by Sacha et al. [52]
and Liu et al. [41], we retrieved representative papers in a semi-
automatic manner from a total of 16465 papers, including all
papers published in AAAI (3274), ICML (1579), ICLR (1109),
NIPS (2790), IJCAI (2571), CVPR (4255), and JMLR (887) from
2012 to 2018, to obtain a comprehensive summary of DNNs. The
collection method includes the following four steps.
Topic-based Collection. We built a topic model to automatically
cluster these papers based on their topics and identified a subset
of papers that are related to the scope of this work. Specifically,
we used hierarchical latent tree analysis (HLTA) [10] to build
a hierarchical topic model from the titles and abstracts of these
16,465 papers. HLTA is employed because of its ability to discover
more coherent topics and better topic hierarchies compared with the
traditional latent Dirichlet analysis-based methods [10], [42]. Each
topic is characterized by words that occur with high probabilities in
this topic and low probabilities outside this topic. Each document
belongs to different topics with varied probabilities. HLTA built
a three-level topic tree, with 25, 141, 935 topics at each level. In
this topic tree, we first automatically excluded irrelevant topics
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TABLE 1: Types of DNN architectures.

CNN RNN

Streamline
Depthwise
separable

conv
Multi-branch Skip con-

nections Stacked Bidirectional Multiple
time-scales Gated Tree-structured

Layers
are
stacked
on top
of one
other

A standard
convolution
is split into
depthwise
convolution
and a 1x1
convolution

The output
of one layer
goes through
multiple
branches
and then
converges

A con-
nection
skips
one or
more
layers

Layers are
stacked to
increase the
depth of a
RNN

A standard re-
current unit is
split into two
parts to pro-
cess the in-
put sequence
in two direc-
tions

Recurrent units
operate at multi-
ple time scales

Add
the gate
mecha-
nism

The connec-
tion graph is
structured as a
tree

E.g.,
VGG [56]

E.g.,
Xception [15]

E.g.,
Inception [59]

E.g.,
ResNet [23]

E.g.,
EESEN [46]

E.g.,
BRNN [54]

E.g., Clockwork
RNN [32]

E.g.,
LSTM [25]

E.g., Tree-
LSTM [60]

(bandit-problem) in a keyword-based manner. We then manually
identified relevant topics to this work, including one level-1 topic
(i.e., deep learning), eight level-2 topics (object detection), and
thirty-five level-3 topics (layers, detector). We then extracted 2,473
papers belonging to these topics with a probability higher than 0.98.

Application-based Filtering. We filtered the collection based on
three benchmark applications, that is, classification, detection, and
segmentation. It is impractical to include DNNs for all applications
in DNN Genealogy, especially considering that many applications
are specific and have little educational value. At the same time,
recent DNNs are usually highly modularized [26], [66]. The DNN
for a high-level application usually consists of several modules
borrowed from benchmark applications. For example, image
caption generators use CNNs borrowed from image classification
to extract visual features and RNNs borrowed from language
translation to generate captions [12], [63]. We identified topics
explicitly related to the three benchmark applications and then
extracted a list of keywords from the papers belonging to these
topics. This list of keywords was used to filter the collection of
2473 papers. After the application-based filtering, we obtained 264
papers.

Related-work-based Refinement. To avoid missing important
DNNs, we adopted a rule-based method to extract papers that were
mentioned as related work in the 264 papers. We identified 25
papers that were mentioned as related work but not included in the
264 papers. Among the 25 papers, 15 papers about non-DNN-based
approaches were removed. The remaining 10 papers were added to
our collection.

Manual Validation. To ensure that the collected papers were
within the scope of our work, we manually checked these 274
papers using the following criteria. First, we removed theory papers,
evaluation papers, and papers about non-DNN approaches. Second,
we checked whether the contributions of the papers included DNN
architectures. We also consulted other surveys [21], [35], [67] and
discussed with the DNN experts to validate our collection. After the
manual validation, we obtained 140 relevant papers. Note that we
did not specify the data types. In addition to DNNs for Euclidean
data (image, text), we also included DNNs for non-Euclidean data
(social network).

4.2 Analyzing DNN Architectures

Manual Paper Coding. For the relevant papers, we conducted
manual coding to extract the corresponding information of the
DNNs. In particular, we extracted a brief description of its
architecture, motivation, and addressed problem. In addition, we
iteratively identified and refined a set of architecture types. After
that, we extracted nine types of commonly used architectures and
66 representative DNNs.
Architecture Types. The nine types of architectures, four of which
are commonly used in CNNs and five are widely used in RNNs, are
summarized in Table 1. We formulated DNN architectures as layers
and connections among these layers. One layer was represented as
Hl(x). We unfolded recurrent layers and used Ht

l to represent the
l− th layer at time t.
Evolutionary Relationships. To visually reveal the evolutionary
relationships among the DNNs, we specified how one DNN is
related to and inspired by previous work. We reviewed all the
collected DNNs and connected two DNNs if their relationship
is discussed in a paper, especially in the related work section.
Explanations of these connections were extracted from the papers.
For example, Chollet [15] discussed how Inception inspired him
to propose Xception. Thus, we directed Inception to Xception and
wrote an annotation to explain this connection. The collected DNNs
were further validated by the DNN experts we interviewed, one
of whom is the coauthor of this paper. DNN Genealogy has been
publicly released to call for further validation.

To help users better understand the representative DNNs, we
also collected related information for each DNN. One DNN
is introduced based on its architecture, performance statistics,
relevant research papers, and a brief textual description.

5 VISUALIZATION

In this section, we describe the two visualization components:
evolution visualization and DNN visualization. Among all the
visualizations, the textual annotations in evolution visualization
are manually labeled, the network glyph in DNN visualization is
handcrafted, and others are traditional data visualizations.
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5.1 Evolution Visualization

Various graphical representations have been proposed for visu-
alizing genealogical data [7], [30], [45]. Based on the existing
literature, the design requirements of DNN Genealogy, and the
characteristics of our data, we developed the evolution visualization
of DNN Genealogy.

The design requirements of DNN Genealogy include explaining
relationships (R1) and identifying evolution patterns (R2). Previous
studies have shown that a directed acyclic graphs (DAG) could
effectively show the relationships in genealogical data [30], [45]. As
a result, we represent the evolutionary relationships among DNNs
as a DAG using the Sugiyama-style layered graph drawing [19],
[58]. In the DAG, nodes represent DNNs and edges represent the
relationships among the DNNs. Textual annotations are manually
labeled on the edges to explain the relationships among DNNs.
We offer two types of annotations: a brief annotation that is labeled
on the edges and a detailed annotation that shows when users hover
over the corresponding edge.

To facilitate the exploration of DNN evolution over time, we
apply a focus+context visualization. A DNN can be represented as a
node or a network glyph based on its degree of interest (DOI) value.
A DNN with a high DOI value is represented as a network glyph
to provide an overview of the model architecture. By contrast, one
with a low DOI value is represented as a node for space efficiency.

To calculate the DOI value of each DNN, we implement a DOI
function based on the one proposed by Furnas et al. [18]. The DOI
value of a DNN x is jointly decided by the importance of this DNN
x and the user’s current interest y (i.e., the one clicked by the user),
which is formulated as below.

DOI(x|y) = IM(x)−Dist(x,y),

where IM stands for the importance score of a DNN and is
normalized to [0,1]. Dist(x,y) encodes the distance between x and
y. We calculate Dist(x,y) as the minimal graph distance between
x and y. An edge interest EI(x,y) ∈ (0,1] is assigned to each
edge e(x,y). The weight of the edge e(x,y) is 1−EI(x,y) when
calculating the minimal graph distance Dist(x,y). A large EI(x,y)
value means that the user is interested in x when focusing on y. We
calculate EI(x,y) based on the similarity between x and y, which
is defined as the Jaccard similarity coefficient of the architecture
types (i.e., Table 1) of the two DNNs:

EI(x,y) =
types(x)∩ types(y)
types(x)∪ types(y)

where types(x) refers to the architecture types of DNN x. For
example, types(ResNeXt)=[Multi-branch, Skip connections] and
types(ResNet)=[Skip connections]. Thus, the similarity between
ResNeXt and ResNet is 1/2. The edge interest is encoded using
the opacity of the edge.

We calculate the importance score of a DNN as a linear
combination of the citation number per month and the average
weekly interest of this DNN obtained from Google Trends [1].
Such an importance score function, even though it reveals the
importance rate of a DNN, can lead to a DOI distribution with
peaks, thereby making the small differences among low DOI values
imperceptible. To tackle this issue, we adopt the diffusing function
purposed by Van et al. [61].

IMdi f f (x) = max(IM(x),β ·maxn∈N(x)(EI(x,n) · IMdi f f (n)))

Here, the importance score of a node depends on its maximum

ⓐ
the performance 
distribution of all 
DNNs

ⓑ
selected 
DNNs

Fig. 4: A visualization that combines box plots (a) with bar charts
(b) helps users compare the performance of DNNs.

importance score and a fraction of its neighbor with the highest
importance score. In a sense, we are diffusing the importance scores
over the entire graph, where we set β = 0.5. As a result, the DOI
function estimates users’ potential interest in a DNN based on its
importance and its relationship to the current focus DNN, thereby
providing navigation cues to users during their exploration.

5.2 DNN Visualization
In this section, we discuss the visualization designs of performance
statistics and model architectures, which are two important factors
in learning and understanding a DNN.

5.2.1 Performance Statistics
The performance visualization was designed based on the current
practice of DNN practitioners. During the interviews, we found
that DNN practitioners usually compare many DNNs across several
datasets. For example, Huang et al. [27] compared DenseNet
with eleven existing DNNs across five datasets. We also found
that DNN practitioners paid unequal attention to different DNNs
when comparing them. Some DNNs were mentioned mainly to
offer an awareness of the context (e.g., the average performance
on a benchmark dataset). Taking the example of DenseNet [27],
among the eleven DNNs discussed in [27], practitioners focused on
comparing DenseNet with FractalNet (the previous state-of-the-art
DNN) or with ResNet (a DNN that inspired DenseNet).

Based on this observation, we combined bar chats with box
plots to facilitate the process of comparing DNN performances
(Fig. 4). The bars represent the performance of the DNNs that
the users are interested in (i.e., the DNNs with high DOI values).
The box plots represent the performance distribution of all DNNs,
thereby providing an awareness of the context. The performance
visualization is linked with the evolution visualization, thereby
enabling users to connect the performances with the corresponding
DNNs displayed on the evolution visualization, as well as to effec-
tively locate the best-performing DNNs under different metrics.

5.2.2 DNN Architectures
Considering the complexity of DNN architectures, DNN re-
searchers usually use diagram thumbnails to describe the main
characteristic of a DNN architecture. Following this practice, DNN
Genealogy enables users to understand DNN architectures from an
abstract level using a handcrafted network glyph and a concrete
level using a complete architecture graph. The handcrafted network
glyph demonstrates the main characteristic of a DNN architecture,
whereas the complete architecture graph enables users to explore
details on demand.
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Fig. 5: Diagram thumbnails of different styles: four example
diagram thumbnails from FractalNet (a) [34], Dual Path Networks
(b) [13], GoogleNet (c) [59], and AlexNet (d) [33].

Network Glyph. To offer users an abstract representation of
different DNNs, a straightforward solution is to copy the diagram
thumbnails from the original papers. However, these diagrams
thumbnails, which were drawn by different authors in various
styles, can impede comparison and understanding when users
explore the evolution of DNNs over time (Fig. 5). Thus, we borrow
lessons about network glyph designs from existing DNN papers
and develop a set of network glyphs with a unified style to facilitate
the understanding and comparison of different architectures. Users
can compare the glyph of two adjacent DNNs by hovering on the
edge that connects the two DNNs.

The design of network glyph follows three principles. The
first one is concise. The network glyph aims to provide an
abstract presentation of a DNN architecture and help users quickly
understand the main characteristic of a DNN architecture. The
second one is intuitive. The network glyph should be intuitive
and can be easily understood by the users of DNN Genealogy.
The third one is generality. The network glyph should be able
to be generalized to commonly used DNN architectures to make
DNN Genealogy extensible. Based on these three principles, we
identify four key components (i.e., layers/blocks, connections,
gates, and combinations) in commonly used DNN architectures and
represent them graphically, as shown in Fig. 6. The network glyph
is developed based on the assembly of the graphical representations
of these four key components. We modify the diagram thumbnails
in the collected papers if they were available and matched the
aforementioned formulation. Otherwise, we handcraft the network
glyphs ourselves.
Architecture Visualizer. We follow previous practice [14], [64]
and visualize the complete architecture of a DNN as a DAG. Our
implementation uses Sugiyama-style layered graph drawing [58],
which extends the architecture visualizer built in Keras [14], a
popular and user-friendly deep learning framework. First, we add
interactions to enable users to examine the details (e.g., number
of channels) of each layer. Second, we illustrate the number of
parameters at each layer using a dot-based visualization, where the
number of dots represents the logarithmic value of the number of
parameters. Third, we add the comparison of DNN architectures.

5.3 Design Iterations

To investigate the usability of our design, we performed usability
sessions three times with four postgraduate students (three reported
themselves as novices and one as an intermediate in DNNs) during
the development of DNN Genealogy. Our modifications in the

layer/
block

connection

gate combination

conv

x x x

(a) (b)

Fig. 6: The proposed network glyphs: (a) the network glyph for
linear gated units [16]; (b) graphical representations of different
components.

iterative design process can be summarized into two categories:
encouraging exploration and facilitating understanding.
Encouraging exploration. We implemented a DOI-based fo-
cus+context visualization to encourage exploration in DNN Ge-
nealogy. Initially, we showed all DNN as nodes and the network
glyph showed only when users clicked a DNN. However, some
users quickly stopped the exploration and expressed their needs for
guidance in further exploration. Therefore, we implemented a DOI
function to calculate the DOI values of DNNs in accordance with
the users’ current interest. DNNs with high DOI values were then
shown as network glyphs as a visual cue to direct attention and to
encourage further exploration.
Facilitating understanding. To facilitate understanding, we re-
duced the use of color encoding and provided additional textual
explanations. Initially, we used color intensively to encode different
types of information. However, users reported that the extensive
use of color was confusing. For example, some users confused the
color used to encode layers in the network glyphs with the one
used to encode architecture types. As a result, we removed the
color encoding in the network glyphs. Meanwhile, based on users’
feedback, we provided detailed textual explanations in the Info View
and in the hover-on tooltips on the edges of the Evolution View.

6 CASE STUDY

6.1 Understanding DNNs
This case study demonstrated that DNN Genealogy could help
users, especially those with limited knowledge of DNNs, under-
stand DNNs. We collaborated with two undergraduate students (S1
and S2) majoring in computer science. They had basic knowledge
about DNNs and were interested in acquiring additional knowledge
through DNN Genealogy.

6.1.1 Exploring and Learning DNNs
S1 was interested in DNNs for sequence modeling and decided to
use DNN Genealogy to learn these DNNs.
Learning LSTM (R4). S1 had heard about LSTM before but had
unclear information about its architecture and working mechanism.
Hence, she started her exploration from LSTM. From the network
glyph of LSTM (Fig. 7(a)), S1 got a basic idea about the
architecture of LSTM, which consists of different gates. With the
description offered in the Info View, S1 learned the functionality
of these gates, namely, to accumulate previous information and to
avoid gradient vanishing/exploring. S1 further explored the related
links offered in Info View and showed special interest in LSTM: a
search space odyssey, which studies the computational components
of LSTM variants. S1 saved this paper and said that she would read
it later.
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Fig. 7: Comparing the network glyph of LSTM (a), GRU (b),
GridLSTM (c), and Lattice Recurrent Units (d). GRU redesigns
the gates in LSTM. Lattice Recurrent Units extend GRU, and
GridLSTM extends LSTM by dividing the one-dimensional data
flow into two dimensions: time dimension (i.e., horizontal direction)
and depth dimension (i.e., vertical direction).

From LSTM to GRU: understanding their relationships (R1).
S1 then switched back to the Evolution View to continue her
exploration. Next to LSTM, the network glyph of GRU was also
expanded (Fig. 7(b)). DNN Genealogy estimates that the user
was interested in GRU based on her current focus on LSTM. By
comparing the network glyph of LSTM with that of GRU, which
are displayed in a unified style and placed side by side, S1 identified
the differences between their architectures: “GRU has two gates
while LSTM has three gates” and “GRU only has one input from the
previous state while LSTM gets two.” Her opinion was confirmed
by the label “redesign gates” on the edge connecting LSTM with
GRU. Hovering on the edge revealed a detailed explanation of the
evolutionary relationship between LSTM and GRU, which justified
the motivation of GRU (i.e., “improve computation efficiency”)
and its method (i.e., “combining forget gate and input gate into
one single gate”).
Examining DNN relationships to learn beneficial modifications
(R1). S1 also examined the child nodes of LSTM and GRU. LSTM
is extended to GridLSTM and GRU is extended to Lattice Recurrent
Unit by dividing the data flow into two dimensions: time dimension
(i.e., horizontal direction) and depth dimension (i.e., vertical
direction), as shown in Fig. 7. By examining these evolutionary
relationships, S1 learned that this architecture modification can be
applied to improve the DNN architecture of interest.

6.1.2 Learning the Evolution Patterns of DNNs
S2 hoped to use DNN Genealogy to obtain an overview of the
variety of DNN architectures developed for image classification,
which is the basis of high-level applications such as semantic
segmentation and video recognition.
Understanding the evolution of certain types of architectures
(R2). By selecting “classification\non-sequential data” in the
control panel, S2 acquired the evolution of the relevant DNNs
in the Evolution View. DNN Genealogy identified four types of
architectures in these DNNs. Color was used to encode these
different architecture types. The four architecture types are not
independent but interacted with one another. Several diverging
(Fig. 8A) and emerging (Fig. 8B) branches appeared. S2 used the
control panel (Fig. 1A) to observe the evolution of the different
types of architectures.

S2 first analyzed the evolution of multi-branch, which first
appeared at Inception and diverged immediately after this DNN
(Fig. 8(a)). While some child nodes of Inception have similar multi-

Fig. 8: DNN Genealogy illustrates the evolution of different types
of DNN architectures: (a) the evolution of multi-branches; (b) the
evolution of skip connections. The network glyphs enable users to
compare different DNN architectures in the context (c).

branch architectures, others are the combination of multi-branch
and other types of architectures. For example, ResNeXt (Fig. 8B)
is the combination of multi-branch and skip connections.

S2 then observed the evolution of skip connections. Different
from the evolution pattern of multi-branch, skip connections
first appeared at HighwayNets but diverged only after ResNet
(Fig. 8(b)). To find the reasons for this delay, S2 compared the
network glyph of Highway Nets with that of ResNet. He observed
that “ResNet removes the gate and directly adds the output of
skip connections to the data (Fig. 8D)”. The gate, which learns
parameters and is dependent on the input, decides whether the
output of skip connections should affect the data. Therefore,
compared with ResNet, Highway Nets has more parameters and is
more complicated [62].
Comparing DNNs in the context of evolution (R6). S2 had a
special interest in a region where the evolution of skip connections
diverged and converged repeatedly, as shown in Fig. 8C. He clicked
and opened their network glyphs to compare their architectures
(Fig. 8(c)) and immediately identified the difference between
ResNet and DenseNet. First, in a building block, ResNet has
only one skip connection (Fig. 8F), whereas DenseNet has dense
skip connections, which make one layer connect to all its previous
layers. Second, ResNet combines branches through addition ( +©,
Fig. 8E) while DenseNet combines branches through concatenation
( ‖©, Fig. 8G).

The major difference among DenseNet, MixNet, and DPN is
how they combine branches, i.e., through addition, concatenation,
or the combination of addition and concatenation. This difference
made S2 wonder, “What is the difference between different types
of combinations?”

S2 hoped to obtain answers from a detailed examination of the
MixNet- and DPN-related papers. He then switched to the Text View
and opened the papers of DPN and MixNet, from which he found
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the answers to his question: “ Concatenation encourages new fea-
ture exploration but can lead to information redundancy. Addition
enables feature reuse but may impede the information flow.”

6.2 Applying DNNs
This case study demonstrated that DNN Genealogy offered in-
formative guidance in applying DNNs to real-world applications.
We collaborated with a first-year PhD student (S3) and a teaching
assistant in a computer vision course (S4).

6.2.1 Choosing a DNN
S3 was working on a project in which an object detection
technique is needed. Because DNNs have achieved great success
in computer vision, S3 decided to use a DNN for his project. This
object detection needed to be carried out in a timely fashion on
computationally limited devices, for example, a mobile phone.
Thus, S3 hoped to use a lightweight DNN. In addition, S3, with
limited experience in DNNs, preferred a simple DNN that was easy
to understand and tune.

There are many available DNNs for object detection, such as
Faster R-CNN [51], YOLO [50], and SSD [43]. S3 had little idea
on which one to choose. S3 also remembered that he had learned
Faster R-CNN in a machine learning course. He wondered whether
Faster R-CNN was more suitable for his project in comparison
with other DNNs. Thus, S3 used DNN Genealogy to select an
appropriate DNN for his project.
Finding state-of-the-art DNNs (R3). S3 first examined state-
of-the-art DNNs using the Performance View, which provides
three measures for comparing the performance of DNNs for
object detection. Frames per second (FPS) measures the model
efficiency. By contrast, the two other measures, PASCAL VOC [17]
and Microsoft COCO [37], evaluate the model accuracy on the
benchmark datasets. Hovering on the corresponding box plots,
S3 found that the best performances of the three measures were
achieved by three different DNNs. YOLO achieves the highest FPS,
whereas DSOD [55] and FPN [36] achieves the highest accuracy
on PASCAL VOC dataset and COCO dataset, respectively.
Comparing DNNs (R6). S3 then compared the three DNNs to
select an appropriate one for his project. After examining the
architectures using the network glyphs, he found that FPN had a
more complicated architecture (Fig. 1F) compared with the other
two DNNs. FPN is a complex DNN architecture that includes a
bottom-up pathway for reducing the spatial dimension, a bottom-up
pathway for upsampling the coarse feature, and lateral connections
for merging features from the bottom-up pathway and features
from the top-down pathway. Preferring simpler architectures, S3
excluded FPN. Next, he compared YOLO and DSOD in the
Performance View (Fig. 1(b)). While YOLO achieves the highest
FPS, it has relatively low accuracy. Its accuracy on PASCAL VOC
dataset is worse than 75% of the available DNNs, as its bar is lower
than the lower quartile of the corresponding boxplot (Fig. 1C). On
the contrary, while DSOD has a lower FPS than YOLO, it is still
better than 75% of the available DNNs, as its bar is above the upper
quartile of the corresponding boxplot (Fig. 1B). S3 concluded that
DSOD made a better balance between efficiency and accuracy com-
pared with YOLO. He finally decided to use DSOD in his project.
Analyze Relationships among DNNs (R1). With little knowledge
about DSOD, S3 was curious about how it outperforms Faster
R-CNN, a DNN that he was familiar with. In the Evolution
View, S3 observed that DSOD was connected with Faster R-
CNN through SSD. He first read the annotation on the edge

(a) deep

(d) fewer FC layer

(b) stacked conv

(c) bottleneck
VGG ResNet

A

conv layer
number of 
parameters
(logarithm)

Fig. 9: Comparing the architecture of VGG with the that of
ResNet. Four architecture modifications can be identified from
the comparison: (a) a deeper architecture; (b) stacked convolution
layers; (c) the bottleneck design; (d) fewer fully connected layers.

to examine the relationships between Faster R-CNN and SSD
(Fig. 1D). In comparison with Faster R-CNN, SSD has no object
proposal network and can predict the bounding boxes and labels
simultaneously. This difference leads to a simple architecture
(simple network glyph), high efficiency (high FPS value), and
high accuracy. By comparing the network glyphs and reading the
edge annotation, S3 found that DSOD extends SSD by applying
dense layer-wise connections (Fig. 1E). Such dense layer-wise
connections improve the model accuracy further . S3 said that
the information provided by DNN Genealogy helped him better
understand DSOD.

6.2.2 Deriving Guidance for Designing DNNs
S4 was preparing slides related to a course project, in which the
students were asked to develop a DNN for the Kaggle Dogs vs.
Cats competition [2]. He hoped to provide design guidance to
the students from comparing and analyzing several representative
DNNs. By default, DNN Genealogy shows the network glyphs
of AlexNet, VGG, and ResNet because of their high importance
scores. He then analyzed and compared these DNNs using DNN
Genealogy.
Investigating DNNs from different aspects (R5). S4 first com-
pared VGG and AlexNet. Through the Performance View, he
found that VGG improves the accuracy of AlexNet at the cost
of increasing model parameters. He then compared the detailed
architecture of VGG and AlexNet. S4 immediately identified
that VGG has a deeper architecture (i.e., more layers) than
AlexNet. He also found that VGG has stacked convolution layers
(Fig. 9(b)). In particular, VGG stacks convolution layers with a
small filter size (3 x 3) to replace one convolution layer with
large filter size (11 x 11, 5 x 5), which is used in AlexNet. This
architecture modification increases the depth and the performances
of a DNN. At the same time, convolutional layers with smaller
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filter size save computational cost. However, VGG still requires
considerably more parameters than AlexNet because it has much
more layers.

Next, S4 compared ResNet with VGG (Fig. 9). The Perfor-
mance View showed that ResNet improves the accuracy and reduces
the model parameters of VGG. He opened the Architecture View
to examine how this was achieved through the architecture design.
S4 found that ResNet has a deeper architecture (i.e., more layers)
than VGG. Given that ResNet has more layers but fewer parameters
than VGG, S4 deduced that ResNet must have fewer parameters
each layer. He then examined the detailed architecture of ResNet
and compared it with VGG. S4 focused on two types of layers that
learn parameters, convolution layers and fully connected layers.
He noticed that ResNet applies a design called bottleneck [23]
(Fig. 9(c)). The bottleneck design is a stack of three convolution
layers with the filter sizes of 1 x 1, 3 x 3, and 1 x 1. The 1 x 1
layers are responsible for reducing/increasing dimensions so that
the 3 x 3 layers only need to handle small input/output dimensions.
Scrolling down to the bottom of the architecture, S4 noticed that
ResNet has fewer fully connected layers than VGG by adding
a global average pooling layer (Fig. 9(d)). ResNet only has one
fully connected layer, whereas VGG has three. Given that fully
connected layers usually have a large number of parameters, this
strategy significantly reduces the number of parameters of a DNN.

7 DISCUSSION

Generality. The methods developed in this work can be generalized
to similar problems. First, in the development of an educational
tool for a specific problem, representative papers can be obtained
from the massive literature by adapting our semi-automatic four-
step pipeline. Second, the system framework and the set of visual
designs can be extended to other types of DNNs. For example, the
genealogy of generative DNNs can be analyzed based on the same
manner, namely, by presenting the performance and architecture of
individual DNNs and by presenting the evolutionary relationships
among different DNNs. The network glyph we proposed can be
extended to generative DNNs.
Knowledge learned. During the development and the case studies
of DNN Genealogy, we have derived various knowledge about
DNNs, including nine typical architecture types, a set of evolution
patterns, and several beneficial architecture modifications. The
derived knowledge demonstrates the educational value of DNN Ge-
nealogy. We believe that much knowledge still remains uncovered
and anticipate that more knowledge will be derived by the users
of DNN Genealogy. Meanwhile, DNN Genealogy keeps updated
to include the new advances in DNNs. New knowledge will be
generated and introduced from these updates.
Limitations & future work. Our case studies demonstrate the
effectiveness and usefulness of DNN Genealogy. Nevertheless, a
space for improvement remains.

First, DNN Genealogy mainly focuses on DNN architectures.
Although the great success of DNNs is mainly due to the advances
in architecture design [35], training methods should not be
overlooked. An understanding of a variety of training methods helps
users improve their understanding of the working mechanisms of
DNNs and thus enable them to appropriately apply DNNs to their
problems. The current version of DNN Genealogy provides a brief
introduction to the commonly used training methods. In the future,
we plan to visually connect the evolution of training methods
with the evolution of DNN architectures. Such connections can

help users determine which training method is appropriate for an
architectures of interest.

The scope of this work is limited to DNNs for the three
benchmark applications. In the future, we plan to extend DNN
Genealogy by including more types of DNNs (deep generative
models). We have added some newly proposed DNNs for non-
Euclidean data (GraphSage [22], graph convolutional network [31])
in DNN Genealogy.

Third, we implement a heuristic DOI algorithm. Although this
algorithm works well in practice according to our case studies,
the importance score function considers only limited aspects of a
DNN, namely, the number of citations and the public interest in
this DNN based on Google Trends [1]. However, different users
may define the importance of a DNN from different aspects, such
as performance, the complexity of architecture, and relevance to
a topic. We aim to address this issue by using attributes other
than those used in the current work to describe a DNN and by
introducing a set of interactions that enables users to formulate and
modify the importance scores of DNNs.

8 CONCLUSION

In this work, we have presented DNN Genealogy, an interactive
visualization tool that offers a visual summary of existing DNNs, to
help in the understanding and application of DNNs. We conducted
a systematic collection of the recent massive literature of DNNs and
summarized 66 representative DNNs for benchmark applications.
Nine types of architecture were identified through a detailed
analysis of these DNNs. A set of visualizations was developed
to help users learn the representative DNNs from various aspects,
including architecture, performance, and evolutionary relationships.
Two case studies were conducted to demonstrate the utility and
usability of DNN Genealogy, especially in providing guidance for
users in understanding, applying, and optimizing DNNs.

With the support of the open-source project (https://github.com/
wangqianwen0418/DNN-Genealogy), we call for participation in
the validation and extension of DNN Genealogy.
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