About me
I am Qianwen Wang (汪倩雯), a tenure-track Assistant Professor in the CS department at the University of Minnesota, Twin Cities (UMN).
As a visualization researcher, my studies combine interactive visualization with interpretable machine learning to help users better explore, understand, and generate insights from their data. My research explores both innovative visualization techniques and their practical application, with a particular emphasis on addressing biomedical challenges (e.g., patient cohorts, genomics, single-cell omics).
My research has made contributions to visualization, human-computer interaction, and bioinformatics, as demonstrated one honorable mention from IEEE VIS 2022, one best paper award from IMLH@ICML 2021, and two best abstract awards from BioVis ISMB 2021-2022. I am an awardee of the HDSI Postdoctoral Research Fund and my research has been covered by MIT News and Nature Technology Features. I actively contribute to the academic community by serving in multiple roles, including as Abstract Chair for ISMB BioVis, Poster Chair for IEEE PacificVis, and as a Program Committee member for both IEEE VIS and ACM IUI.
News
- [Aug, 2023] I am honored to be invited as a speaker for a Kavli Frontiers of Science Symposium 🎉
- [Jun, 2023] I am honored to serve as a VisNotes chair for PacificVis 2024 🎉
- [Jan, 2023] I am honored to continue serving as Abstract Chair for BioVis@ISMB 2023
- [Jul, 2022] Drava are accepted by ACM CHI 2023 🎉
- [Jul, 2022] Our XAI design study won a Hornorable Mention Award 🏆 at IEEE VIS 2022
- [Jul, 2022] Polyphony won the Best Abstract Award 🏆 at ISMB 2022
- [Jul, 2022] I am honored to serve as a poster chair for PacificVis 2023 🎉
- [Jul, 2022] Three papers (PolyPhony, GenoRec, and a design study on XAI ) are accepted by IEEE VIS 2022 🎉
- [Jun, 2022] I am hornored to receive the Postdoctoral Fellows Research Fund Award 🏆 from Harvard Data Science Initiative
- [Apr, 2022] We will host a Visualization in Biomedical AI workshop at IEEE VIS 2022 🎉
- [Feb, 2022] GNNLens is accepted by IEEE TVCG
- [Feb, 2022] We will host a Gosling/Gos tutorial BioVis@ISMB2022 🎉
- [Jan, 2022] I am honored to serve as Abstract Chair for BioVis@ISMB2022
- [Jul, 2021] Gosling won the Best Abstract Award 🏆 at ISMB 2021
- [Jul, 2021] Two papers accepted by IEEE VIS
- [Jul, 2021] One paper accepted by ICML workshop on Interpretable Machine Learning in Healthcare (🏆 Best Paper Award)
- [Jul, 2021] Two long talks at ISMB 2021
- [Mar, 2021] OncoThread is aceepted by ISMB Proceeding track
- [Apr, 2021] Invited talk at PacificVis 2021 Visualization meets AI
- [Jul, 2020] Three papers accepted by IEEE VIS
- [May, 2020] Started my PostDoc position at Harvard University
- [Dec, 2019] Passed my PhD thesis defense 🎉
- [Aug-Dec, 2019] Visited the University of Oxford, hosted by Prof. Min Chen
Research Themes
I design and develop tools to facilitate Human-AI collaboration, which also drives my investigation on visualization techniques, algorithms, and design frameworks.
Automatic & Intelligent Visualization
I propose techniques, authoring tools, and machine learning algorithms in pursuit of making visualizations that can be accurately interpreted and easily used by everyone.
VIS+(X)AI in Biomed/Healthcare
Through wide collaboration, I am studying how VIS + (X)AI can promote scientific discoveries, especially in the field of biomedicine and healthcare (e.g., genomics, single-cell, and cohort analysis).